

Opportunities for interdisciplinary research to improve the evaluation of S2S forecasts

Beth Ebert and Carla Mooney

Acknowledgements: Caio Coelho

S2S Real Time Pilot Workshop 15-17 Nov 2022

OFFICIAL

SAGE: Sub-seasonal Applications for aGriculture and Environment

A new 5-year project of WWRP

Enhanced physical science base

- Research on sub-seasonal to seasonal sources of predictability
- Coupled atmosphere-ocean-land assimilation and prediction systems that resolve large-scale and small-scale processes

Focus on users

- Development of products that serve a variety of actors including agriculture, water resource management, renewable energy, etc.
- Probabilistic prediction
- Communication with users and partners including warnings for slow onset disasters

Enhancing and securing the necessities of life – sustainable development goals, food security, energy and well being

Photo: Wayne Twine, Wits Rural Facility

SAGE drivers, research and approaches

Synthesis from August 2022 WWRP Symposium

Barriers to successful S2S forecasting and priorities to address those barriers

The Bureau of Meteorology

WWRP has two working groups with expertise in evaluation

Joint Working Group on Forecast Verification Research

- Promote the development and application of improved diagnostic verification methods to assess and enable improvement of the quality of weather forecasts, including forecasts from numerical weather and climate models.
- Engage in the plans and implementation of the verification component of WWRP projects from the outset.

Working Group on Societal and Economic Research Applications

- Advance the science of the social and economic application of weather-related information and services
- Knowledge of how to frame, design, and implement research projects co-designed between physical and social scientists and a range of appropriate actors to achieve more useful information for decision-makers and the public.

Verification and evaluation

Verification perspective (Murphy, 1993)

- Quality corresponds to what actually happened
 - Accurate
 - Unbiased
 - Reliable
 - More skilful than some reference forecast
- Scientific approach

Evaluation perspective

Who is the evaluation for?

- **Researcher** = robust method, published output, impact factor
- **User** = useful, useable, used
 - Relevant
 - Timely
 - Accessible
 - Clear about uncertainty
 - Applies to forecast outcome as well as forecast value chain

SAGE: Sub-seasonal Applications for aGriculture and Environment

A new 5-year project of WWRP

Enhanced physical science base

- Research on sub-seasonal to seasonal sources of predictability
- Coupled atmosphere-ocean-land assimilation and prediction systems that resolve large-scale and small-scale processes

Focus on users

- Development of products that serve a variety of actors including agriculture, water resource management, renewable energy, etc.
- Probabilistic prediction
- Communication with users and partners including warnings for slow onset disasters

Opportunities for interdisciplinary research to improve the evaluation of S2S forecasts

- Co-develop and co-evaluate impact-based S2S forecasts
- Improve the communication of probabilistic forecasts and their quality and value
- Assess the value chain for S2S services and high impact events

Co-design/co-evaluation

An interdisciplinary opportunity

- Misalignment between researchers' aims and research end user needs is a major cause of research waste (Slattery et al. 2020).
- Co-design requires commitment, a mix of skills, resources and time.

	GOAL	Provide access to information	Help make sense of, and use, info	Improve diversity of info/knowledge in decision making	Empower people to drive change and innovate
TION	Co-design	x	V	V	√+
COLLABORA	Co-development	×	√	√	v +
	Co-delivery	x	x	√	√ +
CAPABILITY	Science	 Deep discipline-based expertise (e.g. climate data modelling) 	 Translational expertise 	 Discipline-based (e.g. social science, climate sciences) and inter-disciplinary expertise 	Transdisciplinary expertise and skills
	Comms	Development of accessible information outputs	 Development of accessible, practical outputs 	Co-development with others of accessible outputs, use and boundary objects	Tailoring support to meet aspirations and needs of key partners Ensure communications outputs are fit-for-purpose for targeted audiences and purposes
	Facilitation & brokering	• Less necessary	 May be required to support problem framing 	 Critical (facilitation and brokering skills to enable knowledge integration; collaboration) 	 Critical (facilitation and brokering skil to empower others)
	Resourcing	 Internally managed Set funds Finite time frame 	 Internally managed Set funds Time frame can extend (often unfunded) 	Mixed internal and external management Often staged funding Extended time frame (funded)	Externally managed Multiple sources of funding Extended time frame, with foresight to identify funds to extend furthe if needed

Collaborative Climate Science Approaches, CSIRO Co-3D – Integration research

Disciplinary mix including science, communications, facilitation, knowledge brokering, evaluation, applied social science

Co-design requires different ways of thinking

Mental models help with understanding how information is used and its relevance

R.S.Clements (2021) Farmer engagement through Mental Modelling : Opportunities for Climate Change Outreach

A theory of change (program logic) can help design the intervention to provide relevant/timely/useful forecast information to influence decision making

Barriers to co-evaluation

User engagement

- Too late / tokenistic
- Insufficient interest
- Lack of time
- · Evaluation process or results hard for users to understand

Procedural

- Evaluation process not well designed
- Appropriate verification / evaluation methods not used
- · Verification / evaluation results not shared
- No baseline for evaluation

Technical

- Data for verification / evaluation doesn't exist, or is hard to obtain
- Users may have difficulty sharing data with researchers

Commercial

· Commercial users may not be allowed to share data

Project co-design for evaluation

Project design needs to involve users, have clarity about project purpose, program logic, agreed outcomes, measures and relevant evaluation method

Types of evaluation	Description
Process evaluation	How the program was implemented
Outcome evaluation	The effectiveness of the program
Economic evaluation	Costs compared to outcomes
Impact evaluation	Effectiveness in achieving goals
Developmental evaluation	Regular checks to make sure program is on track
Realist evaluation	What worked, for who, how, in what way, when
Utilisation-focused evaluation	Evaluation useful for the user – to enhance utilisation, inform decisions, improve performance

Social Policy Evaluation and Research Unit, Making sense of evaluation (2017) Superu.gov.nz

User based evaluation involves the people for whom the system was intended and measures the things of value to them.

Communicating probabilistic forecasts and their quality / value

WCAS APR-JUN 2022

RIPBERGER ET AL.

481

⁸Communicating Probability Information in Weather Forecasts: Findings and Recommendations from a Living Systematic Review of the Research Literature

JOSEPH RIPBERGER,^a ANDREW BELL,^a ANDREW FOX,^a AARIKA FORNEY,^a WILLIAM LIVINGSTON,^a CASSIDY GADDIE,^b CAROL SILVA,^a AND HANK JENKINS-SMITH^a

^a University of Oklahoma, Norman, Oklahoma ^b University of Georgia, Athens, Georgia

- Accuracy of probabilistic forecasts is a second-order uncertainty a huge challenge to communicate!
- · Very little work has been done in this space
- Rather than communicating probabilistic accuracy, go straight to value?

Communicating probabilistic forecasts and their quality / value

User types

Use / concern

R

•	Low stakes users	Losses from over- and under-predicting are similar
	General assessors	Uncertainty bands provide general assessment of likely forecast quality
	Change assessors	Is a change within the bounds of uncertainty or does it warrant action?
	Risk avoiders	Keep the risk of an adverse outcome to an acceptable level – tails of distribution
	Decision	Explicit, quantitative loss function (typically

Research questions

- How should forecast quality / value be evaluated?
- What metrics are meaningful for the users' applications?
- How should forecast quality / value be communicated?

theorists

involving money)

Adapted from Raftery, 2016, Use and communication of probabilistic forecasts

12

Toward verification that incorporates user decisions

Understanding user decisions (Rodwell et al. 2020)

RESEARCH ARTICLE

Beyond skill scores: exploring sub-seasonal forecast value through a case-study of French month-ahead energy prediction

Joshua Dorrington¹ | Isla Finney² | Tim Palmer¹ | Antje Weisheimer^{1,3}

- Simplified model of trading strategy to optimise value
- Non-meteorological factors may affect forecast value
- User applications have thresholds, cutoffs, nonlinearities that can make purely meteorological scores misleading
- · Augment the model scorecard to include user value

lies	Ag: Livestock protection	New Zealand		
	NGO: Flood Action	East Africa		
Stuc		India		
ase	Grid Winterisation	USA		
User C	Fishery management	Scotland		
	Ag: Crop scheduling	W. Europe.		
	Energy demand	France		

- Users identify the threshold probability which optimises their expected feeling about their decision
- Distribution of user thresholds ~ users' "cost/loss ratios of feelings" (thrill, pain, regret)
- User Brier Score (UBS) a more realistic assessment of user's forecast value than the traditional Brier Score

13

rly Journal of the

Evaluating the S2S forecast value chain

Research questions

- What does the value chain look like for a particular S2S application?
- How do improvements in the chain flow through to user benefit?
- How did the S2S service perform for a high impact event?

HIWeather

Possible approaches

- Co-create a logic model (flowchart) linking user benefit to improved accuracy and value
- Assess baseline performance using verification and evaluation approaches
- Estimate the benefit of different improvements along the value chain
- Use/adapt HIWeather value chain case study template (hiweather.net) to study high impact events at S2S timescales

The Bureau of Meteorology

Co-design and co-evaluation of impact-based S2S forecasts

- S2S applications are now being used in forecast operations to predict the likelihood of drought, flooding, tropical cyclone occurrence, abnormal cold and heat
- Advanced S2S applications are being developed and used to predict possible impacts on agriculture, energy, water resources, forestry, fishing, public health, shipping, defence, disaster risk, media...

Research questions

- How can the user's decision making process best inform both the design of the application and the evaluation approach?
- How to appropriately measure the use, useability and usefulness of the solution and ultimately its impact on the outcomes of the decision?
- How can data on impacts best be acquired and used in evaluation?
- Co-design a new S2S application from the bottom up
 - Deep user engagement from the start (planning stage)
 - Bottom up verification and evaluation approach centred on the user needs
 - Focussed collaboration on impact data gathering and processing
 - Agreement on the expected outcomes

Toward "what the weather will do..."

Interdisciplinary research – opportunities and challenges

Increasingly regarded as the key to tackle contemporary complex societal challenges and to stimulate scientific innovation (Sun et. al. 2021)

Opportunities of interdisciplinary research	Challenges for interdisciplinary research
 Different disciplines working together in a team 	• Time
 Collaboration to bring different perspectives to solve a problem 	Disruption
Itilisation of methods normally associated with	Language
one or more disciples to solve problems in another discipline researchers	Expectations
 Translation of innovative or applied research 	Methods
outcomes from one discipline into another	Lower citation rates
	Who is your user?

OFFICIAL

Thank you

Beth EbertCarla Mooneybeth.ebert@bom.gov.aucarla.mooney@bom.gov.au

OFFICIAL