

Experimental Subseasonal Forecasting of Atmospheric Rivers and

Ridging Events to Benefit Western U.S. Water Management

Dr. Mike DeFlorio

Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, UCSD

UC San Diego

DWR supports a CW3E-JPL S2S Partnership, with key collaborating institutions

CW3E S2S Advisory Panel

F. Martin Ralph¹ (Co-Chair), Duane Waliser² (Co-Chair), Dan Cayan¹, Bruce Cornuelle¹, Art Miller¹

S2S Prediction Team

Mike DeFlorio (CW3E S2S Team Lead)¹, Alphan Altinok², Patrick Broxton⁴, Christopher Castellano¹, Rachel Clemesha¹, Will Chapman⁷, Luca Delle Monache¹, Michael Dettinger¹, Sasha Gershunov¹, Peter Gibson⁸, Alexander Goodman², Bin Guan^{6,2}, Kristen Guirguis¹, Xianan Jiang^{6,2}, Julie Kalansky¹, Brian Kawzenuk¹, Hyemi Kim⁹, Hai Lin¹¹, Wen-shu Lin¹, Andrea Molod¹⁰, Ángel Muñoz³, Ming Pan¹, Cody Poulsen¹, Andrew Robertson³, William Scheftic⁴, Agniv Sengupta¹, Bohar Singh³, Aneesh Subramanian⁵, Frederic Vitart⁶, Jiabao Wang¹, Jing Yuan³, Xubin Zeng⁴, Zhenhai Zhang¹

Affiliations: ¹CW3E, SIO-UCSD; ²NASA JPL/CalTech; ³IRI; ⁴U. Arizona; ⁵University of Colorado Boulder; ⁶UCLA; ⁷NCAR; ⁸NIWA; ⁹ECMWF, ⁹Stony Brook University, ¹⁰NASA Goddard, ¹¹ECCC

Motivation: Western U.S. water managers need better S2S forecasts of precipitation

From Days to

Water Management Decision Support Needs

> Physical Processes Impacting Predictability

Reservoir Flood Em Response

Situationa

The water level in Lake Oroville near Enterprise Bridge in Butte County, California, was 52% below its historical average level when this photograph was taken, on 23 October 2015. Credit: Zack Cunningham/California Department of Water Resources

"Wea daily to w

а

Better Subseasonal-to-Seasonal Forecasts for Water Management

Emerging methods that improve precipitation forecasting over weeks to months could support more informed resource management and increase lead times for responding to droughts and floods.

Adapted from Merryfield

By Michael J. DeFlorio, F. Martin Ralph, Duane E. Waliser, Jeanine Jones, and Michael L. Anderson

i-Scale Weather and

Identify Vulnerabilities
Develop Adaptation
Strategies
Prioritize Implementation

nate"

decadal to century

Image credits: Ralph et al. 2019; NOAA; NOAA; Josef Friedhuber

Overview of CW3E Subseasonal Research and Experimental Forecast Products

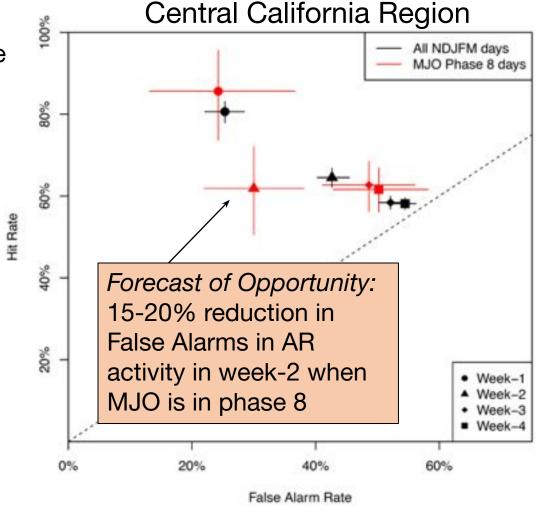
Forecast Product	Lead(s)	Predictands	Lead Times	Development stage	Associated Publication(s)
Weeks 1-3 AR activity outlooks	Mike DeFlorio ¹	AR frequency	Subseasonal	Public	DeFlorio et al. 2019a,b (Cli. Dyn., JGR-A)
Weeks 1-6 ridging outlooks	Peter Gibson ⁵	Z500/ridge types	Subseasonal	Public	Gibson et al. 2020a,b (J. Clim., JGR-A)
Weeks 1-4 AR intensity outlooks	Zhenhai Zhang ¹	AR intensity	Subseasonal	Research/Internal	Zhang et al. 2022 (submitted, JGR-A)
Weeks 1-6 AR/IVT anomaly outlooks	Chris Castellano ¹	Total IVT and AR frequency	Subseasonal	Research	Castellano et al. 2022 (in revision, JGR-A); Wang et al. 2022b (in revision, JHM)
Weeks 1-6 weather regime outlooks	Andy Robertson ³ , Juan Ying ³ , Bohar Singh ³ , Angel Muñoz ³	Circulation regimes	Subseasonal	Public	Robertson et al. 2020 (MWR)

¹ CW3E/SIO-UCSD; ² NASA JPL; ³ IRI; ⁴ University of Arizona; ⁵NIWA

Overview of CW3E Seasonal Research and Experimental Forecast Products

Forecast Product	Lead(s)	Predictors	Lead Times	Development stage	Associated Publication(s)
North Pacific circulation regimes (NP4 modes)	Kristen Guirguis ¹ , Alexander Gershunov ¹ , Tamara Shulgina ¹	Z500/SST	Subseasonal to seasonal	Research/Internal	Guirguis et al. 2020 (GRL); Guiguis et al. 2022 (in prep)
Seasonal precipitation anomaly (next three months and JFM)	Alexander Gershunov ¹ , Rachel Clemesha ¹ , Kristen Guirguis ¹	Pacific SST	Seasonal	Public	Gershunov and Cayan 2003
Seasonal precipitation anomaly clusters (NDJ and JFM)	Peter Gibson ¹ , Will Chapman ¹ , Alphan Altinok ² , Luca Delle Monache ¹ , Mike DeFlorio ¹	Tropical SSTs, VP200, U200, Z500	Seasonal	Research/Internal	Gibson et al. 2021 (Nat. Commun. Earth Environ.)
Seasonal precipitation	Agniv Sengupta ¹ , Duane Waliser ²	Global SST	Seasonal	Research/Internal	Sengupta et al. 2022 (in prep)
Seasonal SWE, precipitation, and temperature forecasts	Xubin Zeng ⁴ , Patrick Broxton ⁴ , William Scheftic ⁴	N/A (based on dynamical ensembles)	Seasonal	Research/Internal	Scheftic et al. 2022 (submitted, J. Clim.)
Odds of water year normal precipitation	Mike Dettinger ¹	Historical precipitation obs	Seasonal	Public	Experimental only

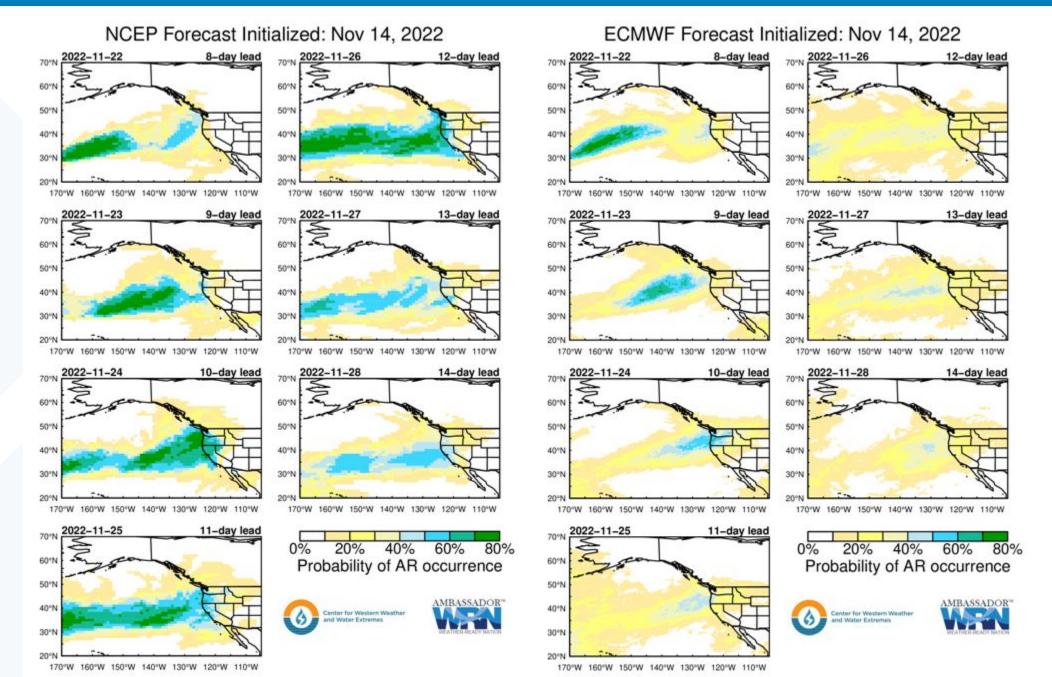
¹ CW3E/SIO-UCSD; ² NASA JPL; ³ IRI; ⁴ University of Arizona

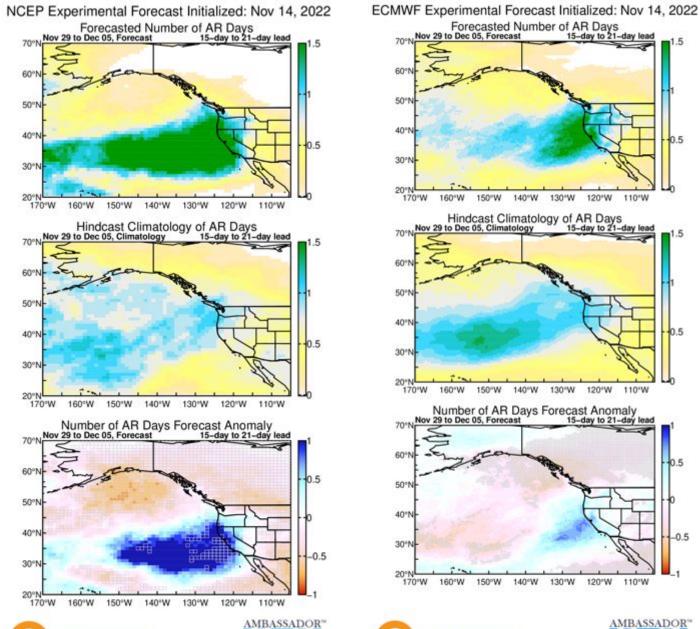

EXPERIMENTAL S2S FORECASTING OF ATMOSPHERIC RIVERS OVER THE WESTERN UNITED STATES

MIKE DEFLORIO, DUANE WALISER, MARTY RALPH, BIN GUAN, ALEX GOODMAN, PETER GIBSON, SHAKEEL ASHARAF, LUCA DELLE MONACHE, ZHENHAI ZHANG, ANEESH SUBRAMANIAN, FREDERIC VITART, HAI LIN, ARUN KUMAR (2019B, JGR-ATMOSPHERES)

Goal: multi-model assessment of S2S AR prediction skill

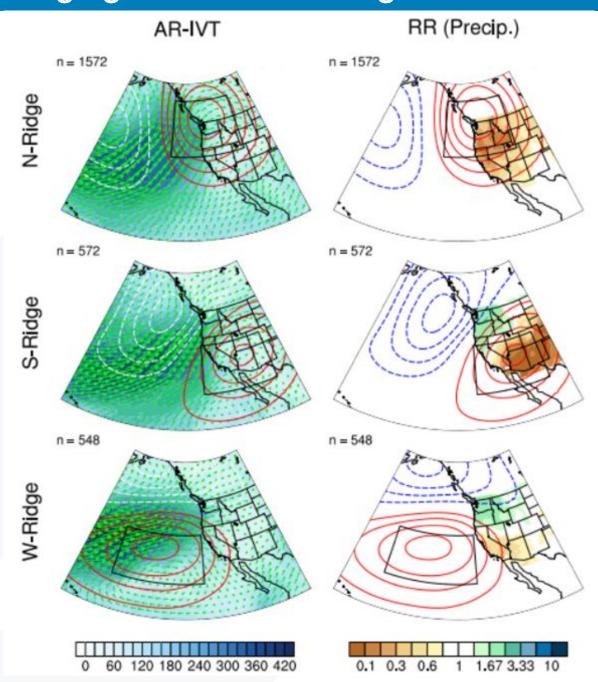
Second approach: predict hits, misses, false alarms, and correct rejections of AR activity along western U.S. coastline in ECMWF hindcast system and composite skill of model prediction during strong ENSO/MJO periods



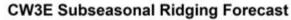


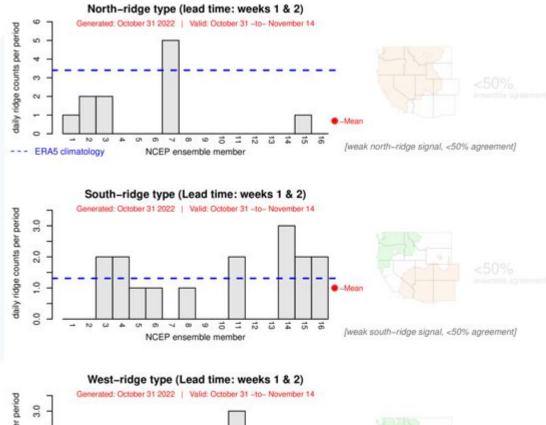
Week-2 AR Activity Outlooks - NCEP and ECMWF (Valid: 22-28 Nov 2022)

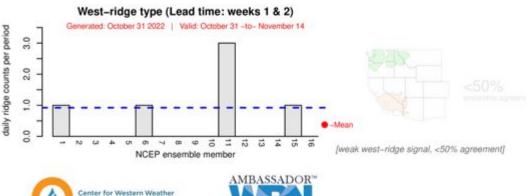
Week-3 AR Activity Outlooks - NCEP and ECMWF (Valid: 29 Nov - 5 Dec 2022)



Center for Western Weather

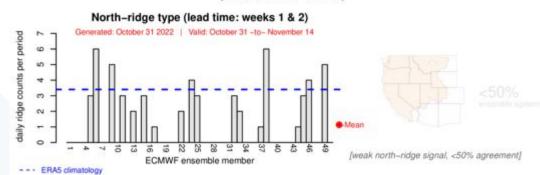



CW3E Ridging Outlooks – background methodology



Weeks 1-2 Ridging Outlooks - NCEP and ECMWF (Valid: 14 Nov - 28 Nov 2022)

(Uses NCEP CFSv2 model)



nd Water Extremes

CW3E Subseasonal Ridging Forecast

(Uses ECMWF model)

Summary

The western U.S. region, and in particular California, experiences the highest interannual variability of wintertime precipitation in the country relative to average conditions.

In addition, water managers across the western U.S. are in need of more skillful predictions of precipitation at S2S lead times.

This combination, along with increasing demand by other end users in the applications community for more skillful longer-lead precipitation forecasts, has led to increased international investment for S2S research, with a focus on better understanding of physical mechanisms related to predictability, and an end goal of creating experimental S2S forecast products to meet end user needs.

The California Department of Water Resources has funded a research and operations partnership led by the Center for Western Weather and Water Extremes and the NASA Jet Propulsion Laboratory to create experimental S2S forecast products for precipitation, atmospheric rivers, and ridging.

These experimental S2S products are necessarily supported by peer-reviewed hindcast skill assessments, and are designed in tandem with stakeholders to best meet their needs.

Selected CW3E S2S Publications: 2021-2022

- Cao, Q., S. Shukla, M. J. DeFlorio, F. M. Ralph, and D. P. Lettenmaier (2021), <u>Evaluation of the subseasonal forecast skill of floods associated with atmospheric rivers in coastal Western U.S. watersheds</u>. *Journal of Hydrometeorology,* https://doi.org/10.1175/JHM-D-20-0219.1.
- DeFlorio, M. J., F. M. Ralph, D. E. Waliser, J. Jones, and M. L. Anderson (2021), <u>Better subseasonal-to-seasonal forecasts for water management</u>. *EOS, 102*, https://doi.org/10.1029/2021EO159749.
- Gibson, P. B., W. E. Chapman, A. Altinok, L. Delle Monache, M. J. DeFlorio, and D. E. Waliser (2021), <u>Training machine learning models on climate model output yields skillful interpretable seasonal precipitation forecasts</u>. *Nature Communications Earth & Environment*, 2, 159. https://doi.org/10.1038/s43247-021-00225-4.
- Guirguis, K., A, Gershunov, B. J. Hatchett, T. Shulgina, M. J. DeFlorio, A. C. Subramanian, J. Guzman-Morales, R. Aguilera, R. Clemesha, T. W. Corringham, L. Delle Monache, D. Reynolds, A. Tardy, I. Small, and F. M. Ralph (2022), Winter wet-dry weather patterns driving atmospheric rivers, and Santa Ana wind events provide evidence for increasing wildfire hazard in California. Climate Dynamics, https://doi.org/10.1007/s00382-022-06361-7.
- Wang, J., H. Kim, and M. J. DeFlorio (2022), <u>Future changes of PNA-like MJO teleconnections in CMIP6 models: underlying mechanisms and uncertainty</u>. *Journal of Climate*, 1-40, https://doi.org/10.1175/JCLI-D-21-0445.1.
- Wang, J., M. J. DeFlorio, B. Guan, and C. M. Castellano (2022), <u>Seasonality of MJO impacts on precipitation extremes over the western U.S.</u> *Journal of Hydrometeorology*, in press.
- White, C. J., D. I. V. Domeisen, N. Acharya, E. A. Adesfsian, M. L. Anderson, S. Aura, A. A. Balogun, D. Bertram, S. Bluhm, D. J. Brayshaw, J. Browell, D. Büeler, A. C-Perez, X. Chourio, I. Christel, C. A. S. Coelho, M. J. DeFlorio, L. Delle Monache, F. Di Giuseppe, A. M. García-Solórzano, P. B. Gibson, L. Goddard, C. González-Romero, R. J. Graham, R. M. Graham, C. M. Grams, A. Halford, W. T. K. Huang, K. Jensen, M. Kilavi, K. A. Lawal, R. W. Lee, D. MacLeod, A. Manrique-Suñén, E. S. P. R. Martins, C. J. Maxwell, W. J. Merryfield, A. G. Muñoz, E. Olaniyan, G. Otieno, J. A. Oyedepo, L. Palma, I. G. Pechlivanidis, D. Pons, F. M. Ralph, D. S. Reis Jr., T. A. Remenyi, J. S. Risbey, D. J. C. Robertson, A. W. Robertson, S. Smith, A. Soret, T. Sun, M. C. Todd, C. R. Tozer, F. C. Vasconelos Jr., I. Vigo, D. E. Waliser, F. Wetterhall, and R. G. Wilson (2021), Advances in the application and utility of subseasonal-to-seasonal predictions. Bulletin of the American Meteorological Society, 1(aop), 1-57. https://doi.org/10.1175/BAMS-D-20-0224.1.

