Multi-Model Comparisons of Subseasonal Tropical Prediction Skill and Real-Time Applications

Matthew A. Janiga¹, Stephanie Rushley², Kurt Hansen², Carolyn A. Reynolds¹

Naval Research Laboratory Marine Meteorology Division¹ National Research Council²

matthew.janiga@nrlmry.navy.mil

Nov 15th 2022

Acknowledgments: We gratefully acknowledge the support of the Chief of Naval Research through the NRL Base Program, Extended-Range Tropical Cyclone Prediction 6.2 (PE 62435N). Computational resources were supported in part by a grant of HPC time from the Department of Defense Major Shared Resource Centers, Stennis Space Center, MS.

- 1. Background and Motivation
- 2. Subseasonal Prediction Using Navy ESPC
- 3. Real-Time S2S Project

4. Future Opportunities

2022 S2S | 2

Sub-Seasonal to Seasonal Tropical Cyclone Prediction and the Navy

2022 S2S | 3

Case Studies of Extended-Range TC **Prediction Skill** RESEARCH

Cyclone Claudia - 2020/01/13

U.S.NAVAL

LABORATORY

Initialized 2019/12/30 - F 15-21 d

Probability of TC Occurrence

Case studies using the ECMWF S2S ensemble indicate that high TC predictability is attributed to strong and well predicted MJO events Domeisen et al. (2022).

U.S. NAVAL RESEARCH LABORATORY MJO and TC West Pacific TC Outbreak of Summer 2015

U.S. NAVAL RESEARCH LABORATORY JOINT Typhoon Warning Center Extended-Range TC Outlooks

The Joint Typhoon Warning Center (JTWC) is producing subjective two-week and three-week genesis forecasts using both public and Navy ESPC forecasts.

Operational Subseasonal Prediction Using Navy ESPC

Operational Navy ESPC Configuration

Navy ESPC:

Time Range, Atmosphere Forecast Frequency (NAVGEM) T359L60 0-45 days **Ensemble** 16 Members (37 km) Long-Term (S2S) each Sunday 60 levels T681L60 Deterministic 0-16 days, Daily (19 km) Short-Term 60 levels

Ocean (HYCOM) 1/12° (9 km) 41 layers 1/25° (4.5 km) 41 layers

Ice (CICE) 1/12° (9 km) 1/25°

(4.5 km)

The Navy ESPC ensemble has been run operationally since August 2020.

2022 S2S | 8

Navy ESPC MJO Prediction Skill

Bivariate Correlation of RMM PCs

Navy ESPC and S2S Models MJO Verification Jul 2020 – Apr 2022 Initializations

Key:

2022 S2S | 9

Navy ESPC MJO Amplitude Bias

Amplitude Bias = Distance from origin (σ).

2022 S2S | 10

Navy ESPC MJO Phase Bias

Phase Bias = Distance between model and observations in RMM space (phases at amplitude = 1).

2022 S2S | 11

U.S. NAVAL Seasonal Dependence of MJO Skill

2022 S2S | 12

LABORATORY

2022 S2S | 13

U.S.NAVAL RESEARCH LABORATORY

Future Upgrades to Navy ESPC

2022 S2S | 14

Real-Time S2S Project

Real-Time Wavenumber-Frequency Filtering Methodology

Following Janiga et al. (2018), wavenumber-frequency filtering was applied to real-time S2S model forecasts.

2022 S2S | 16

Real-Time Wavenumber-Frequency Filtering Methodology

The padded filtering method does a good job approximating the reference method (filtering a multi-decade continuous dataset) for observations (Janiga et al. 2018).

2022 S2S | 17

US NAVAL

LABORATORY

Verification for JJA 1999-2015 Forecasts

2022 S2S | 18

U.S. NAVAL RESEARCH LABORATORY

Example of Wavenumber-Frequency Filtered OLR Forecast

Distribution Statement A: Approved for Public Release. Distribution is Unlimited.

2022 S2S | 19

U.S.NAVAL

LABORATORY

ECMWF

2022 S2S | 20

2022 S2S | 21

2022 S2S | 22

2022 S2S | 23

2022 S2S | 24

2022 S2S | 25

2022 S2S | 26

2022 S2S | 27

2022 S2S | 28

Navy ESPC MJO Phase Diagram

2022 S2S | 29

Future Opportunities

New Wind Shear Products

Total 850-200 hPa Wind Shear Vector and Magnitude

Anomalous 850-200 hPa Wind Shear Vector and Magnitude and Total Shear at Specific Levels

Navy ESPC Ensemble (16 Members)

Shading: 850-200 hPa Wind Shear Magnitude Anomaly Navy ESPC Ensemble (16 Members) Vectors: 850-200 hPa Wind Shear Vector Anomaly Shading: 850-200 hPa Wind Shear Magnitude Contours: 850-200 hPa Total Wind Shear Magnitude Vectors: 850-200 hPa Wind Shear Vector Green = 5 m s⁻¹ (Favorable) Yellow = 10 m s⁻¹ (Neutral) Red = 15 m s⁻¹ (Unfavorable) Week 2 Average: 2020/08/03 - 2020/08/09 30 m s⁻¹ -Week 2 Average: 2020/08/03 - 2020/08/09 15 m s⁻¹ → 20'N 0° 20°S 40°S 0° [m s⁻¹] [m s⁻¹] -5 -2.5 2.5 5 15 20 25 -15 -12.5 -10 -7.5 5 7.5 10 12.5 10

2022 S2S | 31

40°N

20°N

0°

20°S

40°S

U.S. NAVAL RESEARCH LABORATORY

Wind Shear Product Validation

Forecast Week

Verification of weekly-averaged wind shear magnitude for different models as a function of forecast lead time for Jun-Nov 2020 Forecasts.

2022 S2S | 32

Statistical-Dynamical TC Prediction

Statistical-Dynamical Models of West Pacific TC Days

ESPC [MJO, SST] ESPC [TCD OLR, SST]

ECMWF [MJO, SST] ECMWF [TCD OLR, SST] ECMWF [TCD OLR, TCD Shear, SST]

2022 S2S | 34

MME Ensemble Bivariate Anomaly Correlation

2022 S2S | 35

Extended-Range TC Track Products

Ensemble Mean Tropical Cyclone Genesis Frequency within 500 km Radius Forecast Initialized 07/05/2017 valid week 3 (07/20/2017 - 07/26/2017)

2022 S2S | 36

U.S.NAVAL RESEARCH LABORATORY

Real-Time Project:

- Filtering OLR for the MJO provides a more detailed view of the position of the MJO envelope than MJO indices.
- Given large biases in MJO behavior, multi-model guidance can provide valuable context for forecasters and in model evaluation.

Future Opportunities:

- Other large-scale indices.
- Wind shear and other tropical cyclone environment products.
- TC tracks and statistical-dynamical TC predictions.
- Multi-model ensembles.