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Abstract  

 
Forecast verification is a key component of a forecasting system and provides 
information about forecast quality to model and forecast developers and various 
users. This chapter provides an overview of methods relevant to sub-seasonal 
to seasonal (S2S) forecast verification, starting with the definition of forecast 
goodness and some fundamental forecast quality attributes. Next the factors 
affecting the design of verification studies are presented. The recognition of 
uncertainties in observational datasets and the need for care in matching 
forecasts and observations is also discussed. A large part of the chapter is 
dedicated to a review of the most common deterministic and probabilistic 
forecast verification measures and a summary of novel spatial verification 
methods developed during the last two decades. Types of S2S forecasts and 
current verification practices are presented. The chapter is concluded with a 
summary, challenges and recommendations for advancing S2S verification 
research and practice. 
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Chapter starts here 
1. Introduction  

 
Forecast verification (or evaluation) is a critical aspect in the forecast 
improvement process, and is also fundamental to inform forecast users 
regarding their reliability, skill, accuracy, and other features, to aid optimal use. 
The idea of evaluating forecasts and projections using quantitative methods 
dates back more than a century and many measures commonly used today for 
assessing sub-seasonal and seasonal forecasts were developed early in the 
20th century for weather forecasts (Murphy 1996). However, several new 
measures and approaches have been developed in the last couple of decades 
in response to newly identified needs for different kinds of information, changes 
in forecast types, and the need to adequately address certain forecast 
performance questions. For example, spatial methods have become a part of 
the verification toolbox only in the past 20 years. Verification science continues 
as an active research area as new forecasts, such as sub-seasonal, are 



developed and new challenges are discovered. Sub-seasonal forecast 
verification therefore capitalizes on methodological developments on other time 
scales (e.g weather and seasonal). 
 
As defined by Murphy (1993), forecast “goodness” combines forecast quality, 
consistency, and value. Forecast verification, by definition, measures forecast 
quality through comparisons of forecasts to observations. Although forecast 
value (i.e., the “value” accrued to users by utilizing forecasts in decision-
making) is typically related to the forecast quality, its formulation is complex and 
dependent on other factors affecting the decision process (e.g., the cost 
assessment of action versus the losses due to missed action). Hence, quality is 
not equivalent to value. Nevertheless, it is possible to consider user 
perspectives in verification processes through the evaluation of meaningful 
variables and the impacts of specific thresholds, and by applying diagnostic 
verification approaches that examine forecast performance characteristics 
relevant to particular users or groups. 
 
Forecast verification serves a number of purposes. The primary verification 
goals are categorized as follows: 

 Scientific: to inform forecast system development and improvement;  

 Administrative: for monitoring forecast performance over time; or 

justifying a new supercomputer acquisition;  

 User-oriented: for helping users make better decisions.   

 
Each of these purposes may require different verification approaches. 
Administrative users may only be interested in simple measures that are easy to 
compute and follow through time, whereas for scientific purposes a wider range 
of diagnostics is desirable to provide greater forecast performance 
understanding in different situations. Commonly, operational forecasting centers 
focus on administrative aspects, while scientists and developers focus on 
scientific aspects. However, incorporating information from the third aspect – 
forecasts users’ applications – in both administrative and scientific verification 
efforts can often lead to more meaningful information about forecast 
performance. 
 
Relevant forecast quality attributes are dependent on the type of forecast (e.g., 
probabilistic, deterministic) and events (e.g., categorical, continuous) of interest. 
Examples of forecast performance attributes include: 

 Association: Strength of the relationship between forecasts and 
observations.  

 Accuracy: Average difference (e.g. Euclidean distance) between 
forecasts and observations for deterministic predictions and between 
forecast probabilities and binary observations for probabilistic 
predictions.  

 Bias: Distance between the forecast and observation average values. 

 Discrimination: Conditioning on observed outcomes, the degree to which 
forecasts distinguish between different observations or events. 

 Reliability (conditional bias): Conditioning on the forecast, 
correspondence between forecast probabilities and observed relative 



frequency (e.g. an event must occur on 30% of the occasions that the 
30% forecast probability was issued for perfect reliability).  

 Resolution: Conditioning on the forecasts, the degree to which observed 
frequency of occurrence of an event differs as the forecast probability 
changes. 

 Sharpness: Degree to which forecasts deviate from the mean 
climatological value/category for deterministic forecasts, or from the 
climatological mean probabilities for probabilistic forecasts. The 
unconditional variation in the forecasts. 

 
Because verification is a multi-dimensional problem, it is important to measure 
multiple attributes to obtain a meaningful forecast performance evaluation. That 
is, a single measure is unable to provide a meaningful evaluation of a forecast. 
Moreover, single measures can hide important information about forecast 
quality.  For example, the root mean squared error (section 4.1) incorporates 
information about both bias and variance of errors; to avoid confusion about the 
source of a poor score it is important to consider these two features individually.  
 
Specific forecast types may require different treatment from other forecast 
types, and may also create opportunities for novel evaluations. In particular, 
S2S forecast characteristics may lead to consideration of the S2S verification 
problem as somewhat different from verification at other time scales.  For 
example, as S2S models are tuned to represent meteorological phenomena on 
the sub-seasonal time-scale (with a range that covers from day 15 to day 60 in 
some models), they are naturally suited for investigating seamless verification 
across the weather and seasonal time scales (Zhu et al., 2014; Wheeler et al., 
2017). Another particular aspect of S2S verification is the special challenge of 
dealing with inhomogeneities in ensemble size between hindcasts and forecasts 
when evaluated together (Weigel et al. 2008), a challenge also faced in 
seasonal forecasting. Various studies investigated the effect of ensemble size 
on probabilistic forecast quality including attempts to remove the dependence 
on ensemble size in some verification scores to allow comparison [e.g. 
Richardson (2001), Muller et al. (2005), Weigel et al. 2007, Ferro (2007) and 
Ferro et al (2008)], being therefore relevant for S2S verification. An additional 
challenge for S2S verification is the need to evaluate more than one variable 
simultaneously for some forecast types (e.g., bivariate attributes of MJO, see 
section 5.3). 
 
This chapter provides a brief overview of relevant methods for S2S forecast 
verification. Several additional resources exist and provide further details 
regarding forecast verification methods, including Wilks (2011), Jolliffe and 
Stephenson (2012) and a website coordinated by the WMO’s Joint Working 
Group on Forecast Verification Research 
(https://www.wmo.int/pages/prog/arep/wwrp/new/jwgfvr.html). Section 2 focuses 
on the initial steps in the verification process: factors affecting verification 
studies design. Section 3 considers the issues associated with identifying 
appropriate observations for use in verification, and some of the issues resulting 
from their uncertainties.  Commonly used verification measures are introduced 
in Section 4, and current S2S verification practices are described in Section 5.  
Finally, Section 6 includes a summary and recommendations. 



2. Factors affecting the design of verification studies  

 
Various factors need consideration prior to computing verification scores. The 
forecast type being verified is particularly important. S2S forecasts are often 
probabilistic rather than deterministic, and multi-category (e.g. below normal, 
normal and above normal). Dichotomous (yes/no) and continuous deterministic 
forecasts are less common, especially for user applications. This section lists 
the key factors and questions to be considered in the design of a verification 
framework or study, beginning with developing an understanding of what is 
required, and the target user/audience.  
 
2.1 Target audience 
 
The target audience is a key determinant in how a verification study should be 
designed, and therefore should be identified first. For example, is the 
verification for a model developer or for an end-user? What are the forecast 
performance aspects the target audience cares about? What forecast type will 
be evaluated? Are there user-specific thresholds to be considered? What is the 
scope of the verification for the user and how will the verification results be 
used? Should the target audience influence how verification results are 
presented? What complexity of metrics is appropriate? Less scientific 
audiences require simpler, more intuitive metrics and graphics. 
 
2.2 Forecast type and parameters 

 
The verification methodology is tailored to the forecast type and characteristics 
of the parameter to be evaluated: for example, is the forecast deterministic or 
probabilistic? Is it a point forecast or spatially defined? Is the variable smooth or 
episodic? S2S forecasts are often expressed as the likelihood of a particular 
weather regime, positive or negative anomalies, or multi-category (often tercile) 
probability forecasts. The use of anomalies is widespread and requires taking 
account of model climate drifts and biases. In this context it is important to 
identify relevant thresholds for defining the events of interest to be verified. S2S 
forecasts are often area-based, but can also be site-specific. The spatial and/or 
temporal resolution may require an analysis of representativeness (section 3), a 
potential issue arising when pairing gridded forecasts with observations or 
analyses.  
 
2.3 Nature of available observations 
 

Suitable and reliable observations are crucial for attaining informative 
verification results. It is fundamental to have observations able to capture the 
events the forecasts attempt to predict. What observational resolution (temporal 
and spatial) is required to adequately verify the forecasts? This may depend on 
the parameter; for example, precipitation and temperature spatial and temporal 
variability are very different. The impacts of inadequate (inhomogeneous) 
spatial and temporal sampling and observation uncertainty on verification can 
be large, therefore it is important to understand and take these known and 
unknown uncertainties into account. Questions such as the following are 
important to answer: Are the observations quality-controlled? Are faulty 



measurements corrected or disregarded? Is model information used in the 
quality control? How large is the observation uncertainty, and are its sources 
fully known? How can this uncertainty information (or lack thereof) be included 
in the verification results and their interpretation?  
 
2.4 Identification of appropriate methods and metrics  
 
Once the verification goals and purposes have been established according to 
user needs, and the characteristics of the available data are established, then 
appropriate methods and metrics can be chosen. The objective is to identify 
multiple verification attributes to address the questions of interest, and find 
graphical presentations aligned with the requirements identified in sections 2.1 
and 2.2, taking account of the data issues discussed in section 2.3. Section 4 
provides a summary of verification metrics used to assess the most common 
attributes.  
 
 
 
3. Observational references  

 
Observations are the cornerstone of verification. However, reliable, long-term 
and model-independent observations are difficult to find. This is particularly 
challenging for S2S where daily resolution precipitation and near surface 
temperature data is needed for user oriented forecasts (such as to calculate 
weekly averages), as opposed to monthly values, while long time series are still 
required. Besides, accounting for observation uncertainty in verification 
practices is an unresolved challenge in verification research and practice. 
Verification practitioners need to recognize uncertainties sources in 
observational datasets (e.g., measurement errors, remote-sensing retrieval 
algorithms, inhomogeneous and incomplete spatial and temporal sampling, time 
series standardization and homogenization), and their effects on verification 
statistics. It is also important to acknowledge model-dependencies of the 
verifying observation (e.g., calibration and quality control often use a model 
analysis as the reference) in order to correctly interpret verification results. This 
section reviews some of the challenges in the quest for appropriate 
observational references for verification purposes.  
 
Long time series (around 30 years of measurements) are often required for 
climate forecast evaluation and to serve as climatological reference in S2S 
forecasting and verification. These time series are often affected by break-
points (e.g., due to instrument replacement) and therefore complex procedures 
are needed to homogenize and standardize the data (e.g., Vincent and Mekis 
2006). These procedures enable producing temporally coherent time series, but 
can affect the measured values (e.g., extremes) and introduce uncertainties in 
verification datasets.  
 
Verification against point observations can suffer from representativeness 
issues: a point-wise measurement might differ substantially from a model value 
for the nearby grid cell simply because the model value is conceived to 
represent a grid-box average (e.g., precipitation) while the station measurement 



reports the value of a sub-grid phenomena (e.g., a convective cell), which is not 
represented by the model.  Typically, due to the representativeness issue, 
coarse resolution models underestimate precipitation extremes; finer model 
spatial resolution results in better representation of intense precipitation. 
Similarly, coarser resolution models more often predict trace amounts than finer 
resolution models, leading to a positive bias for small precipitation quantities 
(see Figure 1).  
 
Gridded observations are usually obtained from remote sensing instruments on 
satellites or from ground-based radar networks. Satellite-based products can 
provide gridded measurements of temperature, humidity, cloud cover, soil 
moisture, and sea-ice concentration and thickness. Radar-based products 
provide quantitative precipitation estimates. These physical variables are 
obtained from satellite retrieved radiances and radar backscattered reflectivities, 
based on remote-sensing statistical and physical assumptions (e.g., the 
Marshall and Palmer (1948) Z-R relationship to convert reflectivity to 
precipitation rate). To mitigate the effects of these assumptions (and associated 
uncertainties), verification can be performed with a model-to-observation 
approach, for example by comparing model-simulated brightness temperature 
directly to satellite retrieved radiances. Data assimilation algorithms are often 
used to harmonize, merge and quality control satellite and radar-based gridded 
observations, introducing model characteristics/dependence on these 
observations. Finally, gridding procedures (such as kriging) can introduce 
synthetic features, and consequently affect verification statistics. 
 
Verification practices require that forecast and observed values are matched in 
space (and time). Caution is needed when choosing appropriate interpolation 
procedures because interpolation can alter the forecast/observed values, 
affecting verification statistics. For example, bilinear precipitation interpolation 
often introduces small trace and lower extreme values; cubic interpolation often 
introduces small negative precipitation values. Areal-conservative interpolation 
is best for precipitation upscaling (from high to low resolution grids) because 
model precipitation values usually represent a grid-box average, whereas a 
nearest-point interpolation is best for adjusting precipitation on two grids with 
similar resolution. Spatially smooth variables (e.g., temperature, geopotential 
height) are often interpolated using bi-linear or bi-cubic schemes. Neighborhood 
verification approaches relax the exact spatio-temporal co-location for matching 
forecast and observations. These approaches (as well as some spatial 
verification distance metrics) do not require interpolation, and therefore avoid 
the related issues.  
 
Verification against a model-generated analysis is often performed because of 
conveniences including: i) representativeness issues, quality control and 
gridding is addressed by data assimilation algorithms used for analysis 
generation; ii) observations are spatially defined with no spatio-temporal gaps. 
However, a forecast model verification assessment against its own model-
based analysis is affected by inter-dependence and results must be interpreted 
with caution. Park et al (2008) demonstrated that verification against model-
based analyses strongly favors the model used to produce the analysis: for 
fairness in model inter-comparisons, verification against one's own analysis is 



therefore often adopted (at the cost of losing a single unique reference for all 
models). A best practice to reduce the model-analysis dependence effect could 
include verifying against analysis at grid points where an observation has 
recently been assimilated (e.g., Lemieux et al, 2015). The use of the model 
background state in data assimilation algorithms nudges the observations 
toward the model climatology, which can affect scores based on climatology. 
Even if not used directly for verification, data assimilation can be exploited in 
verification practices to provide estimates of observation uncertainties and 
representativeness differences. 
 
Finally, note that all verification procedures which use model-influenced 
observations via the analysis (observations are nudged towards the model 
climatology and upscaled to the model grid) and/or quality control (filtering out 
of observations which differ significantly from a short-range model forecast) 
reduce the verification results utility for all users outside the modeling 
community, and generally lead to overestimating the model forecasts quality. 
However, it is worth noting that S2S forecast verification mostly use re-
analysis/analysis as reference datasets. Another important issue for S2S 
verification is the inconsistency in the computation of reference anomalies used 
to verify the forecasts (usually computed relative to the past 20-30 years) with 
re-analyses and operational (real-time) analyses, which are often based on 
different model versions. The difference is particularly large for surface 
parameters and can contaminate the reference anomalies used to verify the 
forecasts, which are computed by subtracting the operational (real-time) 
analysis from the past 20 or 30 years re-analysis climatological mean, because 
re-analyses are usually not available in real-time and operational analyses are 
not available in the past. 
 



 

Figure 1: Frequency Bias (see section 4.2) for 6h accumulated precipitation (from 30 to 36 UTC) 
for the Canadian RDPS (10km resolution) and HRDPS (2.5 km resolution), for the summer 2015 
against CaPA station measurements over Canada. The model with coarser resolution exhibits a 
larger and positive bias for smaller precipitation accumulations, and a more severe 
underestimation of high precipitation values, with respect to its higher resolution counterpart. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4. Review of most common verification measures 

 
As outlined in section 2, verification metrics selected for a specific application 
depend on several factors; the most important are: 

a. The needs of the users of the verification results; 

b. The characteristics of the variable being verified; 

c. The nature of the forecast and available observations. 

Considering factors b and c leads to classification of forecast variables and 
associated metrics into the following groups: 

i. Deterministic variables (forecasts and observations) – Characterized by 

specific variable values expressed in physical units, for example, 

temperature in degrees Celsius. Deterministic variables are further 

divided into (quasi) continuous, such as temperature, which take any 

physically plausible value, and categorical, which are characterized 

by two or more ranges of values (categories) separated by one or 

more predetermined thresholds. Thresholds may have physical 

meaning. For example, the 0.5 mm daily rain threshold is often used 

to separate rainfall into “no rain” and “rain” categories. Thresholds 

may also be set to values particularly meaningful for forecast users 

(e.g., setting a 50 mm threshold in 24h to indicate flooding risk). The 

set of categories thus defined is mutually exclusive (no overlap in 

values) and exhaustive (covers the whole range of possible values). 

ii. Probabilistic forecasts – Forecasts indicating the probability of 

occurrence for pre-defined categorical variables, or the forecast 

probability distribution for all possible variable values. Probability 

forecasts are usually verified with respect to deterministic 

observations, even though the observations may be subject to 

uncertainty. If observational uncertainty estimates are available, these 

can be used in probabilistic forecast verification (e.g. Candille et al. 

2007). Most metrics described in this section can be generalized to 

incorporate observational uncertainty. 

iii. Spatial verification metrics. These methods are designed to account for 

the spatial nature of the forecast variable and corresponding 

observations (e.g. How does the shape of a forecast feature, such as 

a cloud band, compare with the observed shape?). They can be 

applied to deterministic or probabilistic forecasts, though the former is 

more common and probably carries higher physical meaning. 

This section briefly describes and summarizes common metrics applicable to 
specific verification problems and data types. The forecast attributes (see 
section 1) assessed by each metric are identified.  



4.1 Metrics for continuous deterministic forecasts 

 
Table 1 summarizes the most common metrics used to verify deterministic 
continuous forecasts. The linear bias (B) identifies the average error for the 
verification sample, which is also implicitly included in both the mean absolute 
error (MAE) and the root mean square error (RMSE). Sometimes the bias is 
removed before computing the RMSE. Such removal not only reduces the 
RMSE, but also implies that only the variable portion of the error is assessed. 
However, presentation of B and the bias-corrected RMSE together disentangles 
these two aspects of performance, which together compose the RMSE [see 
Murphy (1988) for the decomposition of the mean square error (MSE)], and 

allows clearer understanding of the forecast errors. Comparing MAE and RMSE 
magnitudes for a particular sample gives an idea about the variability of the 
errors. The lower the variability, the smaller the difference between the two, 
since large errors are more heavily penalized by the RMSE. Thus the RMSE is 
favored when larger errors are considered relatively more important than 
smaller errors. 
 
Skill scores (SS) measure forecast accuracy relative to the accuracy of a 
reference forecast. Most skill scores are in the general format shown in Table 1, 
which defines skill as the fractional improvement of the forecast score 
compared to the score for the reference-for-comparison. If the score for the 
forecast is worse than the reference, then the skill is negative. When the 
reference forecast accuracy is very high, and/or when the sample size is small, 
the skill score can become unstable, with a small denominator. For this reason, 
skill scores are always computed using the final summation score for a 
particular dataset, not for the individual cases. Skill scores commonly use the 
MAE, the mean square error (MSE) or the RMSE as the score. 
 
While climatology (sample mean, or long-term climatology if known), random 
chance and persistence (the last available observation) are the most commonly 
used reference forecasts, sometimes skill scores are used to compare two 
competing forecasts, with the score for the poorer or older model version 
replacing the reference forecast. When the reference forecast is the climatology 
for the verification sample, the skill score is the same as the reduction of 
variance or fraction of variance explained, which is the same as the square of 
the correlation coefficient between the forecasts and observations. This 
interpretation is more complicated when the reference is a second forecast. 
 
The Pearson product moment correlation coefficient (r) is often used to 
measure the strength of the linear relationship between forecasts and 
observations (the association attribute). Perfect association (i.e., r=1) is 
obtained when the forecasts and observations oscillate exactly in the same 
direction. This measure, however, only provides an indication of potential skill 
because correlation is insensitive to forecast biases as well as differences in 
forecast versus observation variances. Several of the continuous measures can 
be displayed simultaneously using a Taylor diagram (Taylor 2001). In particular, 
this diagram displays the correlation coefficient, root-mean-square difference, 
and the ratio of the standard deviations of the forecast and observed patterns.  
 
 



Table 1: Common metrics (or scores) for verifying continuous deterministic forecasts (Fi) against 
the observations (Oi). Subscripts i refer to the i

th
 case of the verification sample; the sample of 

forecast and observation pairs is of size N; the overbar indicates sample averaging. Sf refers 
(usually) to either the MAE or RMSE scores computed for the N pairs of Fi and Oi according to 
the equations in the table; Sr refers to the same score computed using a unskilled reference 
forecast such as the variable mean (climatology) or the latest observed value of the variable 
(persistence); Sp refers to the score for the perfect forecast. For perfect forecasts where Fi=Oi 
for all N pairs both MAE=0 and RMSE=0 (i.e., Sp=0).  
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4.2 Verification methods for categorical deterministic forecasts 

 
Categorical deterministic forecasts are often synthesized using contingency 
tables. Table 2 shows the contingency table and scores for a 2 X 2 (2 category) 
variable, all of which are functions of the four table entries: hits (a), misses (c), 
false alarms (b), and correct negatives (d). Fundamental score characteristics 
are indicated in the table. Analogous table forms and scores exist for more than 
two categories, but multi-categories of a single variable are often treated as 
sequences of 2-category problems, with boundaries at each of the thresholds in 
turn. Murphy and Winkler (1987) relate the contingency table and its entries to 
the forecast and observation joint probabilities, providing the statistical 
framework to interpret categorical scores as functions of joint, conditional and 
marginal probabilities. 
 
Several relationships exist between the categorical scores listed in Table 2, so 
that a subset of those is often calculated, such as the frequency bias (FB) and 
the equitable threat score (ETS) or the Heidke skill score (HSS, to assess bias 
and accuracy/skill). The FB is not a verification score in the strict sense 
because it does not depend on matched forecasts and observations pairs. As a 
ratio of the forecast frequency to the observed frequency of each event 
category, it describes the forecast strategy, “overforecasting” if greater than 1 
and “underforecasting” if less than 1. Several categorical scores can be 
displayed simultaneously in a performance diagram (Roebber, 2008). 
 
Often the occurrence of one of the two categories is larger than the other, 
particularly in the case of extreme events, which are usually much less common 
than the corresponding “non-event”. The extremal dependence index (EDI) and 
the symmetric extremal dependence index (SEDI) are specifically designed to 
score categories with low observed event frequency (a+c)/N (called the base 
rate or climatological frequency). Under these conditions, scores such as the 
threat score (TS), the hit rate (H), the false alarm ratio (FAR), the false alarm 
rate (F), the ETS and the Hanssen-Kuipers discriminant score (KSS) tend 
artificially towards their limit values (0 or 1), rendering the interpretation of the 
verification results challenging. The HSS may also become unstable for low 
base rates because the unskilled forecast accuracy is high. 
 
When both categories are of similar interest, H, FAR, and TS can be computed 
for both categories (event and non-event) separately. For example H for the 
non-event category is d/(b+d) and TS is d/(b+c+d). In this situation the 
proportion correct PC=(a+d)/N is also an informative score. PC is not 
recommended otherwise, because it becomes misleading when one category 
occurs more frequently than the other. See literature on the “Finley affair” 
(Murphy 1996). 
 
H and F refer to stratifying the verification dataset in terms of (conditioned on) 
the observations. These scores are often used in pairs, and along with the 
relative operating characteristic curve (ROC) and area (ROCA) [see section 4.3] 
are useful for evaluating the a posteriori forecast quality as a basis for users’ 
decision-making. 
 



FAR is different from F (and sometimes confused with it) – it is the proportion of 
forecasts which are false alarms, that is, it is conditioned on the forecasts. FAR 
is widely used, and can be controlled by the forecaster, by for example 
forecasting the event less often to reduce the number of false alarms. This 
strategy would also increase the number of missed events (c); therefore FAR 
should be used in combination with H. 
 
The correct negatives (d) are sometimes hard to determine for a contingency 
table, since the “non-event” may be spatially and/or temporally unbounded; d 
can also be very large in the case of extreme events and overwhelm the 
contingency table computations. The scores H, FAR, and TS use only the other 
three entries of the contingency table, and therefore can be computed without 
estimating or taking into account correct negatives.  However, all skill scores 
and scores useful for discrimination and decision making need correct 
negatives estimates. Some ways of estimating d for severe weather non-events 
are suggested in Wilson (2014), and Wilson and Giles (2013). 
 
Table 2. Contingency table format and associated scores. The letters a, b, c and d refer to total 
counts of cases with the corresponding pairing of forecast and observation. Sample size is N. 
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number of events observed (or not observed) 

0 to ∞ Best score = 1. Simple 
comparison of forecast 
frequency to observed 
frequency.  

Hit rate (H) 
(Probability of 
detection) 

ca

a
H


  

0 to 1 Best = 1. Incomplete 
score – does not 
account for false 
alarms 

False alarm rate 
(F) (probability of 
false detection) 

db

b
F


  

1 to 0 Best = 0. Can be 
improved by 
forecasting the event 
less often to reduce 
false alarms 

False alarm ratio 
(FAR) ba

b
FAR


  

1 to 0 Best = 0. Sensitive to 
false alarms but 
ignores misses. Use 
with H 

Threat score (TS) 
(Critical success 
index) 

cba

a
TS


  

0 to 1 Best = 1. Sensitive to 
both false alarms and 
misses; ignores correct 
negatives 



Equitable threat 
score (Gilbert skill 
score) (ETS) r

r

acba

aa
ETS




  

Where 
N

)ca)(ba(
a r


  

-1/3 to 1; 0 
indicates no 
skill over 
chance 

Best = 1. TS adjusted 
for the number correct 
by chance (guessing), 
a form of skill score. 
Always < TS 

Hanssen-Kuipers 
discriminant (KSS) 
(also true skill 
statistic TSS or 
Pierce skill score, 
PSS) 

FH
db

b

ca

a
KSS 





  

-1 to 1; 0 
indicates no 
discriminant 
ability 

Best = 1. Related to 
the ROC area and 
EDI/SEDI scores. 
Indicates the ability of 
the forecast to 
discriminate between 
events and non-
events, as a basis for 
decision-making 

Heidke skill score 
(HSS) 

r

r

EN

E)da(
HSS




  

Where 

)]db)(dc()ba)(ca[(
N

1
E r   

-∞ to 1 Best = 1. Skill score in 
the general format 
with “chance” as the 
reference forecast. 

Extremal 
dependence index 
(EDI) 

HlnFln

HlnFln
EDI




  

-1 to 1; 0 
indicates no 
accuracy 

Best = 1. Designed to 
avoid convergence to 
0 or 1 for low 
frequency (rare) 
events. Most often 
used for verifying 
extreme event 
forecasts 

Symmetric 
extremal 
dependence index 
(SEDI) 

)F1ln()H1ln(HlnFln

)F1ln()H1ln(HlnFln
SEDI






 

-1 to 1; 0 
indicates no 
accuracy 

Best = 1. Similar to 
EDI, but approaches 1 
only for unbiased 
forecasts. 

 
4.3 Verification measures for probability forecasts 
 
Probability forecasts are estimates of the likelihood of occurrence of an “event”, 
which is usually defined as a category of a variable (e.g., the probability for the 
daily average temperature to be in the upper tercile of the temperature 
climatological distribution for a specific location or area). Categories are defined 
by thresholds as for categorical variables. Probability forecasts are difficult to 
verify meaningfully as single forecasts because the observation is usually 
treated as categorical (the event either occurred as forecast or not). Probability 
forecast verification thus proceeds after a sufficiently large sample of matched 
forecasts and observations is collected, allowing comparative assessment of 
the actual event occurrence frequencies with the forecast probabilities. 
 
While probability forecasts are most often obtained from ensembles, it is worth 
noting that ensemble forecasts require post-processing to generate 
probabilities, by calculating probabilities of occurrence of events simply from the 
proportion of the ensemble members satisfying the threshold for the event, or 
by using the ensemble to estimate a full predicted distribution. Ensembles are 
collections of deterministic forecasts obtained from perturbed initial conditions 
and/or variations in the model formulation.  Raw ensembles are assumed to be 



a random selection from the unknown conditional probability density function 
(pdf) of possible forecast values and/or the associated cumulative distribution 
function (cdf). The resulting forecast values distribution is inherently discrete 
given the relatively small ensemble sizes, but processing methods are available 
to estimate continuous pdfs. The verification methods summarized below are 
suitable for probability forecasts of specific events or for forecast pdfs. 
 
Table 3. Common scores for probabilistic forecasts verification. The variables pi and oi refer to 
the i

th
 forecast probability and i

th
 observation in a sample of size N. The observation oi is 0 (1) if 

the category predicted with probability pi doesn’t (does) occur. Subscript k refers to the k
th

 
category of a total of M categories, and Pf(x) and Po(x) are the predicted and observed cdfs 
respectively, the latter taking the form of a step (heaviside) function with the step at the 
observed value of the variable x. Sf, Sp and Sr are defined exactly in the same way as Table 1. 

Measure Equation Range - 
orientation 

Characteristics 

Brier Score 
(BS) 
 





N

1i

2

ii )op(
N

1
BS  

1 to 0 Best = 0, negatively 
oriented, Mean 
squared error of the 
probability forecasts 

Ranked 
Probability 
Score (for 
discrete 
categories) 

 
 





























M

1m

2
m

1k

k

m

1k

k op
1M

1
RPS  

1 to 0 Best = 0, equals BS 
for 2 categories, for 
> 2 categories, 
sensitive to distance 
between forecast and 
observed category 

Continuous 
rank 
probability 
score (CRPS) 

 




 dx)x(P)x(PCRPS
2

of
 

0 to ∞ Best = 0, Compares 
cdf for forecast with 
cdf of observation. 
Obs cdf is step 
function if 
deterministic; result 
is in the units of the 
variable, reduces to 
MAE for deterministic 
forecast 

Brier skill 
score (BSS), 
rank 
probability 
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(RPSS) and 
Continuous 
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probability 
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(CRPSS) 
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-∞ to 1 Best = 1. Skill scores 
in the standard 
format for negatively 
oriented scores. 
Caution: The 
reference forecast is 
defined by the 
sample over which 
the skill score is 
computed. (See 
Hamill and Juras, 
2006) 

 

Table 3 summarizes commonly used verification scores for probability 
forecasts. The Brier score (BS) is generally used for probability forecasts for a 
dichotomous (binary) variable, while the discrete ranked probability score (RPS) 
is preferred when there are more than two categories. The continuous ranked 
probability score (CRPS) is used to evaluate the full continuous or quasi-
continuous forecast cdf. The BS, RPS and CRPS all measure the attribute 
accuracy, while the corresponding scores shown on the bottom row of the table 



measure skill.  The three scores can be partitioned into three components 
representing the attributes reliability, resolution and uncertainty, the latter being 
a function of the observations only. The reliability (or attributes) diagram and the 
ROC curve offer a concise and convenient graphical representation of most 
probability forecasts attributes listed in section 1. 
 

  

 

( a ) ( b ) 
Figure 2: Attributes/reliability diagram (a) and ROC plot (b) for the event average week 3-4 
(second fortnight) maximum temperature forecasts in the upper tercile for Southeast Australia 
for spring start months. See text for description and interpretation. (Adapted from Figure 7 of 
Hudson et al 2011) 

 
Figure 2a shows an example of an attributes diagram (which is based on a 
reliability diagram) produced by first binning the verification sample according to 
forecast probability, and next computing the observed event frequency for all of 
the forecasts in each bin. The diagram is a plot of the observed frequency 
versus the forecast probability for each bin. Five bins are used (0 to 20%, 20 to 
40%, 40 to 60%, 60 to 80%, 80 to 100%). The points are plotted at the mid 
points of the five bins, but it is possible and perhaps more accurate to plot the 
points at the actual mean forecast probability for each bin. Forecasts are 
considered perfectly reliable if the points lie along the 45o diagonal, indicating 
that, on average, the forecast probability is equal to the observed event 
frequency. Dashed lines are drawn horizontally at the climatological event 
frequency (the base rate), and vertically at the average forecast probability. 
Comparing these two lines indicates whether the event is, on average, 
overforecast or underforecast. In the example, there is no (unconditional) bias. 
The average forecast probability is about 33%, equal to the observed 
frequency.  
 
The line which bisects the angle between the diagonal and the climatology line 
is known as the “no skill line”. On this line, the resolution of the forecasts is 
equal to the reliability component (and of opposite sign), so that skill with 
respect to sample climatology along this line, as computed by the BSS, is zero. 
When the plotted curve lies within the shaded area, the forecasts have skill with 
respect to climatology. In the example there is apparently little skill, but there is 
an indication of resolution in the forecasts since the plotted line is inclined with 
respect to the base rate line. The plotted curve presents a shallower than 45o 
angle, indicating that the forecasts are overconfident. The highest probabilities 
are overforecast while the lowest probabilities are slightly underforecast. Curves 
lying at a steeper than 45o angle (in the area between the diagonal and the 
vertical dashed line) may be skillful, but are said to be over-resolved and/or 



underconfident. This situation does not often happen in practice. Finally, the 
histogram on the reliability diagram represents the percentage of the forecast 
probabilities sample falling into each bin, known as the “sharpness diagram”. 
Sharp forecasts have u-shaped histograms presenting high frequencies for near 
0 and 100% forecast probabilities. In the example, forecasts are not particularly 
sharp, and skewed towards the lowest probabilities, with probabilities of less 
than 20% forecast nearly 40% of the time. 
 
The ROC curve (Figure 2b) and the area under the curve (ROCA) measures the 
ability of the forecast to discriminate situations leading to events of impact from 
those which do not. Such discriminating ability is useful for decision-makers in 
deciding whether to take action to minimize adverse weather/climate impacts. 
The curve is obtained as follows: 

1. Organize the verification sample in ascending order of the predictive 

variable (usually forecast probabilities, but can also be a physical 

variable such as precipitation amount). If the forecasts are from 

ensembles, each set of ensemble forecasts can be ordered and pooled 

over all verification sample cases. The associated observation is binary 

(1 or 0) according to whether the event occurred or not for each case. 

For an ensemble forecast the observation value 0 or 1 is assigned to all 

members of that particular ensemble. 

2. For each unique prediction value, considered as a prediction threshold 

for the event of interest, compute the false alarm rate and hit rate for the 

resulting contingency table. 

3. Plot the hit rate against the false alarm rate. The result is a stepwise 

graph, approximating a curve. The more points that are possible (the 

more unique forecast values exist in the dataset), the “smoother” the 

curve will be. 

4. The area under the curve can be computed by triangulation, using all 

plotted points. 

Examples of the computation of the ROC by this method are shown in Mason 
and Graham (2002). It is common practice to bin the data into forecast 
categories, often forecast probability deciles, or as in figure 2b, in pentiles. This 
results in fewer points to estimate the curve, possibly leading to an 
underestimation of the ROCA.  For example, if the frequency of occurrence of 
the event for a 5% forecast is lower than for 15% forecasts, then this 
discrimination information is lost if the data are binned into 20% bins.  However, 
the tradeoff is that there must be enough cases in each bin to support the 
plotted points, or the plotted curve will be noisy and confidence in the location of 
the points will be low.  Underestimates of the ROCA can be avoided by fitting a 
binormal model to binned data (Wilson 2000). The binormal model is described 
in Mason (1982). 
  
Discrimination ability is indicated if the ROC curve lies in the upper left half of 
the diagram. The closer the curve lies to the upper left corner, the better the 
forecast discrimination ability. The diagonal is the “no skill”, or “no 
discrimination” line.  This means that the forecast probabilities distribution when 
the event occurs is no different from the forecast probabilities distribution when 
the event does not occur, and therefore the user has no basis to decide whether 



to take action or not. The ROCA is the total area between the lower right corner 
and the ROC curve. ROCA larger than 0.5 indicates discrimination ability. 
Perfect discrimination (ROCA=1) occurs when there is no overlap at all between 
the conditional forecast distribution when the event occurred and the conditional 
forecast distribution when the event did not occur. Sometimes the ROC score is 

expressed as 1ROCA2   to give a positively oriented score varying between 0 
and 1. 
 
Figure 2b shows two ROC curves. The solid line is for S2S model probability 
forecasts for the event “second fortnight averaged maximum temperature in the 
upper tercile for south-eastern Australia”. The dashed line is obtained by 
assuming the first fortnight average temperatures persist for the second 
fortnight. The plot indicates modest discrimination, with some improvement of 
the S2S model (ROCA=0.70) over the persistence forecast (ROCA=0.59). 
 
One cautionary note is needed with regard to application of ROC plots and skill 
scores with respect to climatology. The relevant standard of comparison is 
always the mean observation of the sample used to compute the score. For the 
ROC, discrimination of all variation sources from the overall sample mean is 
credited. This effect is discussed in Hamill and Juras (2006). 
 
4.4 Spatial Methods 

 
Meteorological variables defined over spatial fields are characterized by spatial 
structures and features. Traditional point-by-point verification approaches do not 
account for the intrinsic spatial correlation existing between nearby grid-points. 
This practice leads to double penalties (associated with small spatial 
displacements) and limited diagnostic power (traditional scores do not inform on 
displacements or error scale dependence). To address these issues, several 
spatial approaches have been developed and applied to weather forecasts in 
the past two decades. Spatial verification techniques aim to:  
 

i) account for spatial structure and features;  
ii) provide information on the forecast error in physical terms (e.g., 

diagnose the location error as distances in km); and  
iii) account for small time-space uncertainties. 

 
Spatial verification approaches are categorized in five classes:  

1. Scale-separation approaches involve decomposition of the forecast and 
observation fields into scale components using a single band spatial filter 
(Fourier transforms, wavelets, spherical harmonics), followed by a 
traditional verification on each spatial scale component. The rationale is 
to provide information on physical processes associated with weather 
phenomena on different scales (frontal systems versus convective 
precipitation; planetary, synoptic and sub-synoptic scales). These 
approaches enable assessment of bias, error and skill on each individual 
scale; are used to analyze predictability scale-dependence (by 
determining the no-skill to skill transition scale); and to assess the 
forecast versus observation scale structure. Scale-separation techniques 
have been successfully applied both to weather and climate studies (e.g. 



Casati 2010; Jung and Leutbecher 2008; Denis et al. 2002, 2003; Livina 
et al. 2008) and can be useful in the S2S framework. 

2. Neighborhood methods (Ebert 2008) relax the requirement for an exact 
observation-forecast location match, and define a neighborhood (both in 
space and time) where the forecast and observation are matched. Data 
treatment within the neighborhood differentiates the verification 
strategies which include simple averaging (equivalent to upscaling, Yates 
et al, 2006); comparison of forecast versus observed event frequencies 
(Roberts and Lean; 2008); evaluation of different attributes of the 
forecast versus observed pdf (Marsigli et al, 2005); application of 
probabilistic and ensemble verification approaches to assess the forecast 
pdf within the observed neighborhood (Theis et al, 2005). Neighborhood 
approaches are suitable for comparing higher versus coarser resolution 
models. Moreover, they enable probabilistic evaluation of deterministic 
forecasts. 

3. Field deformation techniques use a vector field to deform the forecast 
field towards the observed field until an optimal fit is found (by 
maximizing a likelihood function). A scalar (amplitude) field is then 
applied, in order to correct the intensities of the deformed forecast field to 
those of the observed field. These morphing techniques were originally 
developed for data assimilation and nowcasting (Nehrkorn et al. 2003; 
Germann and Zawadzki, 2004), and have only recently been used in 
verification (Keil and Craig 2007, 2009; Marzban and Sandgathe 2010; 
Gilleland et al. 2010). 

4. Feature-based verification techniques (Ebert and McBride 2000; Davis et 
al. 2006a,b) first identify and isolate features in forecast and observation 
fields (by thresholding, image processing, using composites, cluster 
analysis), and then assess different attributes (displacement, timing, 
extent, intensity) for each pair of observed and forecast features. 

5. Distance measures for binary images assess the distance between 
forecast and observation fields by evaluating the (geographical) 
distances between all the grid-points exceeding a selected threshold. 
These metrics were developed in image processing for edge detection 
and/or pattern recognition (Dubuisson and Jain 1994; Baddeley 1992a,b) 
and only recently used for verification purposes (Schwedler and Baldwin 
2011; Gilleland, 2011; Dukhovskoy et al. 2015). The distance measures 
are sensitive to differences in object shape and extent in addition to  the 
distance/displacement between forecast and observed features, and thus 
are considered a hybrid between field-deformation and feature-based 
techniques. 
 

 
 
 
 
 
 
 
 
 



5. Types of S2S forecasts and current verification practices  
 
5.1 Deterministic S2S forecast verification practices 

 
Sub-seasonal forecasts are often presented as weekly averages for the 
forthcoming four weeks, either defined as averages over days 1 to 7 (week 1),  
8 to 14 (week 2), 15 to 21 (week 3), and 22 to 28 (week 4) as in Li and 
Robertson (2015), or as averages over days 5 to 11 (week 1), 12 to 18 (week 
2), 19 to 25 (week 3), and 26 to 32 (week 4) as in Weigel et al. (2008). Some 
studies [Hudson et al. (2011, 2013)] investigate averages over days 1 to 14 
(first fortnight) and 15 to 28 (second fortnight).  
  
As in weather and seasonal forecasting practice, the mean of the available 
ensemble members is commonly used as an estimate of the forecast 
distribution central value. Deterministic forecasts are expressed as ensemble 
mean anomalies, computed by subtracting the ensemble mean forecast from 
the model long term mean (climatology) estimated using retrospective forecasts 
produced for a number of previous years for a first-order model bias correction. 
This procedure used for computing ensemble mean anomalies is typically lead 
time dependent. 
 
The simplest S2S verification practice is eyeball (visual) comparison of the 
forecast ensemble mean anomaly with the corresponding observed anomaly. 
As shown in Figure 1 of Vitart et al. (2017) one can, for example, visually 
compare 2-meter temperature ensemble mean forecast anomaly maps for 
different models with the observed anomaly. Eyeball comparison is useful for an 
initial qualitative assessment of specific forecasts but is prone to subjective 
interpretation biases, and therefore must be used with caution. Quantitative 
assessment obtained by computing verification metrics based on a collection of 
past forecasts and observations provides a more complete view of forecast 
quality. 
 
A common verification practice for deterministic (ensemble mean) S2S 
forecasts is to compute the linear correlation between the forecast and 
observed anomalies at each grid point (over the available retrospective 
forecasts) and produce a map with the obtained values [see Figures 1 of 
Hudson et al. (2011) and Li and Robertson (2015), and Figure 10 of Weigel at 
al. (2008)]. The Pearson product moment correlation coefficient is often used for 
this purpose, providing an association measure (see section 4.1). However, due 
to its insensitivity to forecast biases, complementary accuracy metrics are 
required to quantify forecast errors. A standard S2S metric used for this 
purpose is the linear bias (see section 4.1). Figure 3 of Weigel et al. (2008) 
provides an example of 2-meter temperature ensemble mean bias for weeks 1 
to 4 retrospective forecasts. 
 
Deterministic S2S forecast skill can be estimated using the mean squared error 
skill score (MSSS) as performed by Li and Robertson (2015). The MSSS is 
based on the MSE, an accuracy measure similar to the RMSE (see section 4.1) 
with the main difference being that the square root needed for the RMSE is not 
computed for the MSE. In the examples shown in Figures 13 to 15 of Li and 



Robertson (2015) the reference set of forecasts used to compute the MSSS 
were climatological forecasts given by the climatological average rainfall for a 
given weekly average. The maximum MSSS equals unity and is obtained for 
perfect forecasts with null MSE. Negative values indicate that the forecasts are 
less accurate than the reference climatological forecast. 
 
5.2 Probabilistic S2S forecast verification practices 

 
A common procedure in S2S probabilistic forecast verification is to construct 
ROC plots and reliability diagrams as described in Section 4.3, or to compute 
the RPSS and construct reliability diagrams as in Vigaud et al. (2017a,b). Figure 
12 of Vitart and Monteni (2010) and Figure 3 of Hudson et al. (2011) show 
additional ROC plots and reliability diagrams S2S examples for a collection of 
forecasts aggregated over a number of grid points within a pre-defined 
area/region. The area under the ROC plot provides an indication of the ability of 
the forecasting system in successfully discriminating occurrence from non- 
occurrence of the event of interest (i.e., how forecast probabilities vary when 
stratified on the observations). The reliability diagram provides a graphical 
interpretation of probabilistic forecast quality in terms of reliability (how well 
forecast probabilities match the observed frequency of the event of interest) and 
resolution (how the observed frequency varies when the data are stratified by 
the forecast probabilities).  
 
By computing the ROC area at each grid point and mapping the collection of 
obtained values one can have a spatial idea of forecast discrimination ability, 
particularly for regions exhibiting ROC area above 0.5 [the reference value for 
unskillful forecasts with equal (50%) probability of distinguishing/discriminating 
events from non-events]. Figure 2 of Hudson et al. (2011) shows examples of 
ROC area maps for probabilistic forecasts of precipitation averaged over the 
first and second fortnight for events defined as precipitation in the lower and 
upper terciles. 
 
5.3 Madden and Julian Oscillation (MJO) forecast verification 

 
A specific type of sub-seasonal forecast is the forecast of the Madden and 
Julian Oscillation (MJO, Madden and Julian 1971, 1972, 1994; Zhang 2005), 
which usually emerges as enhanced convection over the Tropical Indian Ocean 
and propagates eastward along the Equator. MJO forecasts and the associated 
verification are important to both model developers and forecasters in order to 
provide information about model behavior and performance in representing 
tropical precipitation.  
 
MJO forecasts are distinct from traditional weather and climate forecasts 
because they are displayed in a two dimensional phase space represented by 
two so-called Real-time Multivariate MJO indices (RMM1 and RMM2) as 
defined by Wheeler and Hendon (2004). Figure 3a shows an example of an 
MJO forecast initialized on 1 January 1986 for the following 41 days. The initial 
points for the observations (blue line) and ensemble mean forecasts (red 
dashed line) are indicated with large brown dots. The small black dots are 
separated by 5 days. Counter-clockwise progression indicates eastward MJO 



signal propagation. The MJO strength is measured by the distance of each 
point in the phase space diagram to the origin. The central circle represents one 
standard deviation and is usually considered the threshold for defining an active 
MJO signal. The observed RMM1 and RMM2 are the principal component time 
series of the first and second leading modes of the combined empirical 
orthogonal function (EOF) analysis of daily outgoing longwave radiation (OLR), 
850 hPa and 200 hPa zonal wind anomalies latitudinally averaged from 15oS to 
15oN. Both RMM1 and RMM2 are normalized by the observational standard 
deviation, resulting in indices with zero mean and unit variance. See Rashid et 
al. (2011) and Gottschalck et al. (2010) for additional information on how the 
forecast RMM1 and RMM2 are computed. 
 
Figure 3b shows the schematic for a pair of points [O(t) and F(t,τ)] in the two 
dimensional MJO phase space represented by the RMM1 and RMM2 indices 
(horizontal and vertical axis, respectively). The point O(t) highlighted with a blue 
dot represents the location of the observed MJO signal at time t. The point F(t,τ) 
highlighted with a red dot represents the forecast MJO signal at time t produced 
τ days earlier. The points O(t) and F(t,τ) in Figure 3b illustrate, for example, the 
fourth black dots after the initial large brown dots shown in Figure 3a 
representing a forecast for time t equal to the 20 January 1986 produced in the 
previous 1st January 1986 (τ=20 days lead forecast). The blue solid line 
connecting the origin of the phase space plot to the point O(t) graphically 
illustrates the observed MJO signal. The projections of this signal along the 
horizontal and vertical axes are illustrated in Figure 3b as a1(t) and a2(t) and 
represent the observed RMM1 and RMM2, respectively. The red solid line 
connecting the origin of the phase space plot to the point F(t,τ) graphically 
illustrates the forecast MJO signal for time t produced τ days earlier. The 
projection of this signal along the horizontal and vertical axis is illustrated in 
Figure 3b as b1(t,τ) and b2(t,τ) and represents the τ days lead RMM1 and RMM2 
forecasts for time t, respectively. 
 
As the RMM1 and RMM2 axis in Figure 3b are orthogonal, the observed a(t) 
and forecast b(t,τ) MJO amplitudes are expressed as 
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and the observed (φ) and forecast (ϴ) MJO phases, represented by the angles 
between the blue and red lines and the horizontal RMM1 axis, respectively, are 
expressed as 
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Following Rashid et al. (2011) the amplitude A(τ) and phase P(τ) errors for a 
collection of N forecast and observed MJO pairs as function of forecast lead 
time τ are defined as 
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The amplitude error verification metric A(τ) is similar to the linear bias (see 
section 4.1). Both A(τ) and P(τ) measure accuracy in term of the average error. 
A(τ) is negatively oriented (best forecasts have A(τ)=0). P(τ) expresses the 
mean angle difference (ϴ-φ) of the forecast ϴ and observed φ MJO phases 
over the N available pairs. P(τ) is positive if the forecast phase on average 
leads the observed phase. Note that to obtain Eq. (6) one needs to use cross 
and dot product properties in the process of finding the angle (ϴ-φ) between the 
observed (blue line) and forecast (red line) MJO signal. 
 
Lin et al. (2008) introduced the following metrics for evaluating the quality of the 
bivariate MJO forecasts displayed in the RMM1 versus RMM2 phase space: the 
bivariate correlation r(τ), the root mean square error RMSE(τ) and the mean 
square skill score MSSS(τ) following Murphy (1988).   
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See figure 3b for a graphical representation of (t,τ). 
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is the mean squared error for the climatological (unskillful) forecast that always 
issues an absent MJO signal RMM1=RMM2=0 for all t and τ [b1(t,τ)=b2(t,τ)=0] 
and is equivalent to the observed (climatological) variance of the MJO. 
 
The bivariate correlation r(τ) is an association measure examining the strength 
of agreement (or disagreement) between the observed (φ) and forecast (ϴ) 



MJO phases, but is insensitive to MJO amplitude errors (biases in the 
magnitude of the forecast MJO signal). The RMSE(τ) is a simultaneous 
accuracy measure of both phase and amplitude of the MJO similar to the RMSE 
earlier introduced in section 4.1.  
 
The upper limit for the bivariate correlation r(τ) is obtained for perfect forecasts 
indicating an exact match between the forecast and observed phases of the 
MJO (when ϴ=φ) and equals unity. The lower limit for r(τ) is obtained for 
forecasts indicating an opposite match between the forecast and observed 
phases and is equal to −1 (when ϴ=φ+180o). For perfect forecasts with 
a1(t)=b1(t,τ) and a2(t)=b2(t,τ) the bivariate RMSE(τ) equals 0. For the 
climatological forecasts [in the absence of an MJO signal and thus 
b1(t,τ)=b2(t,τ)=0], the bivariate RMSE(τ) equals 21/2 because the variance of 
each of the two observed RMM indices [a1(t) and a2(t)] is equal to 1. Forecasts 
are generally considered skillful if their RMSE(τ) is less than 21/2 (the RMSE(τ) 
for climatological MJO forecasts). For forecasts with observed amplitude but 
completely random phase [a persistence forecast at very long lead time such 
that a1(t)=b1(t,τ) and a2(t)=-b2(t,τ)] the RMSE(τ) asymptotes to 2.  
 
The mean squared skill score MSSS(τ) provides a relative measure of skill for 
the MJO forecasts compared to the climatological forecast that indicates an 
absent MJO signal [b1(t,τ)=b2(t,τ)=0]. Perfect forecasts with MSE(τ)=0 have 
MSSS(τ)=1. Forecasts with errors as large as the climatological variance 
[MSE(τ)=MSEC] have a null skill score [MSSS(τ)=0], and forecasts performing 
worse than the climatological forecast (i.e. MSE(τ)>MSEC) have a negative skill 
score (MSSS(τ)<0). 
 
It is common practice [Lin et al. (2008), Lin and Brunet (2011), Rashid et al. 
(2011)] to present all MJO forecast verification metrics discussed here as a 
graph of each metric as function of forecast lead time τ. For positively oriented 
metrics [e.g., r(τ)], with larger values indicating better forecast performance, 
such graphs usually display a decreasing curve with large values of the metric 
for shorter forecast lead times and smaller values for longer forecast lead times. 
The opposite feature is generally noticed for negatively oriented metrics, with 
smaller values indicating better forecast performance [e.g. RMSE(τ)]. For these 
metrics the graphs usually display an increasing curve with small values for 
shorter forecast lead times and large values for longer forecast lead times. 
 
Finally, it is worth noting that this section addressed MJO forecast verification 
from a deterministic (ensemble mean) perspective. The reader is encourage to 
see Marshall et al. (2016) that recently proposed a methodology for probabilistic 
MJO forecast verification. 
 
 
 



 

 
( a ) ( b ) 

 
Figure 3: a) Phase space plots of RMM1 and RMM2 computed from NCEP/NCAR reanalysis 
and satellite OLR (blue) and the ensemble-mean POAMA hindcast initialized on 1 January 1986 
(red), for the period 1 January to 10 February 1986 as shown in Figure 3 of Rashid et al. (2011). 
The black dots are every 5 days. Each octant of the phase diagram is numbered (from 1 to 8) 
according to the phase definitions of Wheeler and Hendon (2004) Also labelled are the 
approximate locations of the enhanced convective signal of the MJO for that location of the 
phase space, e.g., the “Indian Ocean” for phases 2 and 3. The RMM1 and RMM2 values were 
smoothed with a 1–2–1 filter in time prior to plotting. b) Schematic representation of a MJO 
forecast F(t,τ) in the RMM1 versus RMM2 phase space for a particular time t produced τ days in 
advance (i.e. with lead time of τ days) with the corresponding observed MJO signal O(t). See 
text for additional explanation. 
 
 
 
6. Summary, challenges and recommendations in S2S verification 

 
This chapter presented an overview of forecast verification methods relevant to 
S2S, including current practices. Deterministic and probabilistic verification 
metrics commonly used for weather and seasonal forecast verification are also 
used for sub-seasonal forecast verification. However, a number of challenges 
still need to be addressed including the following: 
 

 Advancing seamless verification practice to allow a smooth comparative 
quality assessment across different time scales (Zhu et al., 2014; 
Wheeler et al., 2017); 

 Dealing with different ensemble sizes in S2S retrospective forecasts, 
which are usually much reduced, and real time forecasts when 
computing forecast probabilities and verification scores (Weigel et al., 
2008); 

 Advancing the treatment of observational uncertainty in S2S verification 
(Bellprat et al., 2017);  

 Application of spatial verification methods in generally coarse resolution 
S2S models. 



Below are some recommendations for advancing S2S forecast verification 
research and practice: 

 Identify the most relevant forecast quality attributes for the target 
audience and verification question of interest and choose the appropriate 
scores for a thorough assessment;   

 Develop an S2S forecast verification framework for comparing real time 
and retrospective forecast skill levels; In the light of the richness of the 
S2S project database (Vitart et al. 2017) in terms of available 
retrospective forecasts and near real time forecasts from several 
modeling centers, and the need for the production of verification 
information in support of future routine sub-seasonal forecast delivery, 
there is clearly the need for producing verification information to help 
forecasters and users from various sectors to acquire knowledge about 
the strengths and weaknesses of these forecasts, in order to build 
confidence on S2S forecast products (Coelho et al. 2018);  

 Use verification metrics meaningful to users (e.g., use user-relevant 
thresholds when verifying probabilistic forecasts); 

 Move beyond traditional weekly/fortnightly verification toward more user 
oriented procedures (e.g., active and break rainfall phases, dry/wet 
spells, heat wave forecast verification). Various application sectors 
usually require detailed weather within climate information, which are not 
traditionally verified. The S2S project database (Vitart et al. 2017) 
provides an excellent opportunity to assess forecast quality of these 
longstanding demands of various sectors; 

 Use appropriate verification measures when dealing with extreme events 
(e.g., Stephenson et al. 2008; Ferro and Stephenson 2011) such as, heat 
waves, cold snaps, droughts, and extended rainy conditions; 

 Use novel verification measures adequate for S2S forecasts (e.g., 
probabilistic measures such as the Generalized discrimination score 
[Weigel et al. 2008, Weigel and Mason 2011] and spatial methods that 
provide performance information for forecasts with coherent structures 
[Gilleland et al. 2009] if the spatial resolution of the forecasts allows such 
detailed spatial verification; 

 Explore the novel concept of fair scores in S2S forecast verification 
(Fricker et al. 2013, Ferro 2014); 

 Address sampling uncertainties when computing scores using, for 
example, bootstrap procedures (Doblas-Reyes et al. 2009) for generating 
verification measures confidence intervals and producing statistically 
meaningful comparisons between forecasting systems. Due to the 
generally limited number of available S2S retrospective forecasts and 
near real time forecasts it becomes important to have strategies for 
estimating the uncertainties around the computed verification scores. 
The bootstrap procedure, which allows the computation of a large 
number of verification scores by re-sampling the limited number of 
available forecasts, is an interesting alternative for this purpose; 

 Further explore the framework for probabilistic two-dimensional phase 
space MJO forecast verification (Marshall et al. 2016). Until very recently, 
MJO forecast verification has been performed using deterministic scores 
based on ensemble mean forecasts. Again, the S2S project database 
(Vitart et al. 2017), which contains a very rich amount of ensemble 



retrospective forecasts and near real time forecasts from various 
modeling centers, provides an excellent opportunity for advancing 
probabilistic MJO forecast verification practice; 

 Advance conditional verification practices such as verification conditional 
on, for example, the MJO, and the El Niño Southern Oscillation (ENSO) 
phases as well as on particular weather regimes. As MJO and ENSO are 
recognized as important predictability sources on the S2S time scale, 
more studies aiming to diagnose the impact of these two phenomena on 
the prediction ability of current S2S models in variables such as 
precipitation and near surface temperature, among several others, are 
required. 
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